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RADAR WAVEFORMS DERIVED FROM ORTHOGONAL MATRICES

I. INTRODUCTION

Generally, modem radars incorporate pulse compression waveforms to simultaneously obtain
sufficient energy on target for detection and the desired range resolution. This is achieved by coding
a relatively long transmit waveform to achieve the bandwidth desired so that upon reception and
matched filtering the pulse is compressed in time to a width that is approximately equal to the recipro-
cal of the bandwidth. The compressed pulse is equivalent to the autocorrelation of the transmit pulse
in the absence of noise and Doppler shift. To not mask weak targets in the sidelobes of a stronger
target, the sidelobes of the compressed pulse should be small.

Previous pulse compression waveforms are exemplified by the Frank, Barker, pseudo-random
shift register codes, and the Lewis-Kretschmer polyphase codes 11]. In the present report we describe
new pulse compression waveforms having low or zero sidelobes when an individual waveform or
multiple dissimilar waveforms are processed. These waveforms, also referred to as coded sequences,
are related to certain orthogonal matrices that are associated with complementary sequences and also
periodic waveforms having constant amplitude autocorrelation sidelobes that are equal to zero. We
also investigate periodic waveforms derived in a similar manner that have a constant sidelobe level
equal to -1.

Complementary sequences are multiple code sequences having autocorrelation functions (ACFs)
that sum to 0 everywhere except at the match point where the correlation peak occurs. New orthogo-
nal processing is derived whereby the summed cross correlations of complementary sequences are
identically equal to zero. Several codes of interest are shown to be able to remove a nonmoving
ambiguous range target or clutter return. Also, subcomplementary sequences having ACFs that sum
to 0 beyond a certain interval are described and the theory is generalized.

Periodic waveforms having a constant sidelobe level equal to 0 are related to complementary
sequences; also, they are of interest because they have associated aperiodic waveforms that have low
sidelobes. The relationship is developed between these periodic waveforms and circular Toeplitz
matrices having inner products between the rows equal to 0. Closely related to these waveforms are
those that are associated with circular Toeplitz matrices having inner products equal to -1. Several
periodic and associated aperiodic codes are described that are based on Number Theory considerations
that are established from the required inner products of the circular Toeplitz matrices. New codes are
derived from the product of two periodic codes, and from a generalization of the Frank and the
Lewis-Kretschmer P4 periodic codes; and also, it is shown that certain permutations of periodic codes
having constant sidelobes of -1 or 0 are also periodic codes having the same property. In addition, a
new class of periodic codes, referred to as reciprocal codes, are briefly described.

Manuscript approved May 2, 1988.
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KRETSCHMER AND GERLACH

II. COMPLEMENTARY CODES

IIA. Basic Properties

Complementary sequences are coded sequences (complex numbers in general) having autocorre-
lation functions Gi(k), which when time aligned and added together, sum to zero everywhere except
at the match point. That is, by letting the ith sequence of length N and the jth unit amplitude
element be denoted by si j, the ith discrete autocorrelation is given by

S* ij Si~J+k 0 S k c N-1
j=l

Gi(k) = N+k (1)
| SijS*i,j-k -(N - 1) c k < 0

Cj=l

and for M sequences, the sum of the ACFs is given by

M 0 k *0,
Gi (k) = NM, k =0 (2)

where * represents complex conjugation and k denotes an integer offset from the match point at zero.
It may be shown that at the match point the S/N ratio is maximized.

One of the early papers on complementary sequences by Golay [2] deals with pairs of binary
coded sequences conceived in connection with an optical problem of multislit spectrometry. The for-
mulation above allows for the more general case considered later where the elements of the sequences
may be complex. Golay defines a set of complementary series as a pair of equally long binary
sequences (consisting of ones and zeros) having the property that the number of pairs of like elements
with a given separation in one series is equal to the number of pairs of unlike elements in the other
series. Golay illustrates this with the two sequences (1001010001) and (1000000110) having three
pairs of like and unlike adjacent elements, four pairs of like and unlike elements that are two elements
apart, and so on. A later comprehensive paper by Tseng and Liu [3] describes generalized properties
of complementary sets of binary sequences consisting of more than two sequences. Of particular
interest in Ref. 3 are sets of subsequently described sequences referred to as mates that exhibit a cer-
tain kind of of orthogonality. In a later paper, Sivaswami [4] describes multiphase complementary
sequences.

We now discuss basic matrix relationships that characterize complementary sequences. Let the
rows of an (M X N) matrix S represent rows of M sequences, each of length N. That is,

SI S 11 Sl2 ... SIN

S2 S2l S22 ... S2N

5_ S- . .. S (3)

SM SM1 SM2 ... SMN

2



NRL REPORT 9080

The ACFs of each sequence using Eq. (1) may be written as

GA(k): S1S1IN, SS11,N-1

G2(k): S21X2N, S21S2,N-1

+*+ S 12S IN .

± S 22S 2N 5 

GM(k): sM1 5MNl * *
5M1I MN-1 + 5M25MN' ..* 

from which it is observed that in order to satisfy Eq. (2) we require that the inner product of the first
and last columns of Eq. (3) equal 0, the inner product of the first and (n - 1)th columns plus the
inner product of the second and nth columns equal 0, and so on. Letting b(i) represent the ith
column of Eq. (3), we can state the required conditions for complementary sequences as

N-k
Q(k) = A, (b(i), b(i + k)) = 0,

i =1
(5)

where (e, f ) denotes the complex inner product of the vectors e and f given by

M
(ef) = j eifi .

i =1

From Eq. (5) it is noted that a sufficient condition for sequences to be complementary is that the
columns of the S matrix in Eq. (3) be mutually orthogonal. As a simple example consider the (2 x
2) Hadamard matrix given by

H(1)= [ 1 ].

The ACFs of the first and second rows are (1, 2, 1) and (-1, 2, -1) respectively, which sum to (0,
4, 0). Higher order Hadamard matrices having mutually orthogonal columns can be generated by the
recurrence relation

H(k - 1)
H(k) = H(k - 1)

H(k - 1)1
-H(k - 1) '

where H(O) = 1 and H(l) is given by the example shown above. The next higher order Hadamard
matrix H(2) is given by

I I I 2]I -1 1 -1

H (2) = I 1 -1 -1 I

I -1 - 1 1

Tseng and Liu [3] describe methods for generating higher order complementary sequence matrices
from any given complementary sequence matrix making use of orthogonal transformations.

3
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KRETSCHMER AND GERLACH

Another binary complementary matrix can be generated from pseudorandom shift register codes
[5]. Consider the simple three-element shift register code given by (1, -1, -1). Forming a (4 x 4)
matrix consisting of the (3 x 3) submatrix consisting of the code and its rotations, and a fourth row
and column of l's, we have

which has mutually orthogonal columns (and rows) and hence consists of complementary sequences.

Another example is given by the Frank [6] and the Lewis-Kretschmer [7] P4 code matrices.
The Frank code matrix has elements that are the complex conjugates of the discrete Fourier transform
(DFT) matrix. The (N X N) Frank code matrix F is given by

F0 W~~~~ W~~~ .. FO WNO WNO WNO . . . WNO 

FL O WN WN . * WN.I

F2 WN WN WN . . . WN

F = = , (6)

FN - I WNO W~~NNI N(N - I) ... WeN - 1)(N - I )

where WN = e -j2r/N and j eir/4 = . For example, for N = 4, we have

F0 1 1 1 1

F1 1 i -1 -ij
F = F2 = 1 -1 1 -1 (7)

F3 1 -j -1 j

which is to be seen to consist of mutually orthogonal columns and rows. The polyphase Frank code
is formed by chaining or concatenating the successive rows of the F matrix. A Lewis-Kretschmer P4
code of length N2 can also be written in terms of an orthogonal (N x N) matrix. The P4 code
polyphase code elements are given by the phases [1,7]

¢(i = (i - 1)2 + 7r(i - 1), i=1,2 , (8
P

where P is the number of code elements. The Frank and P4 codes have several interesting properties
that are later described in detail.

4
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11-B. Additional Properties of Complementary Sequences of Particular Interest

We next discuss several additional properties that are related to different kinds of orthogonality.

1. Mates

First we discuss the concept of mates as defined by Tseng and Liu [3], consisting of two com-
plementary sets of binary sequences.

Definition: A complementary set of sequences is said to be a mate of another set if the sum of the
cross-correlation functions of the corresponding sequences in these two sets is zero everywhere.

From Ref. 3 we obtain the following theorem.

Theorem 1: Let (SI, S2, * Sp) be a complementary set consisting of an even number of sequences
where S1 and S2, S3 and S4, * SP -I and SP are pairs of sequences of the same length. Then

[S2, (-SI), S4, (-S3), SP- . (-SP-

is one of its mates (- denotes a time reversal).

Proof: Let Cxy denote the cross-correlation function between x and the time reversal of y. The
theorem is proved from the, fact that

Cxy + Cy(-5) = Cx + C(-x)9 = =xy 9xy

Note that the proof is based on the pairwise sum of the cross correlations of two sequences x
and y with 5 and -x, respectively. Actually this theorem is more general and is not restricted to
complementary sets. As an example consider the two sequences SI and S2 given by

(1, 1, 1, -1) and (1, -1, -1, 1).

Their ACFs are

(-1, 0, 1, 4, 1, 0,-1) and (1, 0, 1, 4, 1, 0, 1).

We next form the mate Ml and M2 , which is given by

(1, -1, -1, 1) and (1 -1 -1 -1).

The cross correlation between (SI, MI) and (S2, M2) is

(-1, 2, 1, -2, -1, 0, 1) and (1, -2, -1, 2, 1, 0, -1),

whose corresponding elements sum to zero. This is potentially useful in eliminating ambiguous range
returns and for reducing mutual interference between radars operating in the same band.

5



KRETSCHMER AND GERLACH

2. Cross Correlation Theorem

Next, we derive a new orthogonality relationship which states that certain sets of complementary
sequences have cross-correlation functions that sum to zero by using all pairwise permutations. Here,
all cross-correlation function permutations are required in order that their sum be identically equal to
zero. This differs from the concept of mates defined by Tseng and Liu whereby the sum of two cross
correlations at a time is equal to zero. The cross-correlation theorem may be formally stated in the
following theorem, which is proven in Appendix A.

Theorem 2: If the rows and columns of an (N x M) matrix are orthogonal and all the columns
except one sum to zero, then the sum of all cross correlations between nonidentical code words is
zero.

Examples of matrices satisfying the theorem are the circular shift register matrices having an
appended row and column of l's described previously and the Frank and P4 matrices.

3. Orthogonality of Cross Correlation of Frank Code Matrix Rows

A still different orthogonality relationship is presented as a subset of Theorem 2 that has poten-
tial applications in removing ambiguous range radar returns. Here, the cross correlations between
codes, represented by the rows of a matrix with a given separation, sum to zero.

Theorem 3: Let the cross correlations between rows I and m of an (N x N) Frank code matrix be
represented by Clm (n). Then

N-I
F, C1,~Q) = 0, n = 0, ±1, 42,..., 4(N - 1), (10)
1=0

where m i (1 + r) mod N and r = 1, 2, ... ,N -1.

Proof: See Appendix B

As an example of removing a stationary target from the first ambiguous range interval, consider
the simplified example illustrated in Fig. 1 for N = 4. First F1, F2 , and F3 of Eq. (7) are transmit-
ted but not processed. Then F0, F1, F2, and F3 are transmitted, and during each sweep the return
signals are processed with a filter matched to the most recent transmitted code. This is referred to as
Channel 0 in Fig. 1. By summing the returns from the four sweeps beginning with F0, ambiguous
range targets (or clutter) from the first, second, and third ambiguous range intervals are eliminated
according to the previous theorem. Moreover, since F0, F1, F2, and F3 are a complementary set of
sequences, the sidelobes of stationary targets in the unambiguous range intervals sum to zero. Other
processing channels may be included as indicated in Fig. 1, if desired, which are matched to the other
range intervals, and stationary clutter from the mismatched range intervals is eliminated. While the
theorem has been shown to apply to the Frank code matrix, it has been found to also be true for the
Lewis-Kretschmer PI, P3, and P4 code square matrices, and also the P2 code matrix for odd square
integers only (see Ref. 1 for a description of the PI, P2, and P3 polyphase codes).

4. Subcomplementary Sequences

Another concept of interest is that of subcomplementary sequences [8]. These consist of a pair
of sequences of length 2kTo (k = 1, 2, -**) having ACFs that sum to zero for all shifts equal to or
greater than the ACF duration ro of an underlying waveform.

6
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XMT PULSES

Il [F21 F31 IFol IFil F21 1F 3]

[-- PROCESSING-H
INTERVAL

MATCH TO

CHANNEL: O F0 F1 F2 F3

1 F3 F0 F1 F2
2 F2 F3 F0 F1

3 F1 F2 F3 F0

Fig. 1 - Example of processing to remove stationary
clutter and resolve range ambiguity

For a signal So consisting of N elements and having an ACF duration of P ro, Sivaswami [8]
shows that the 2N sequence S, formed by concatenating So with itself, (SOSo) and the 2N sequence
SI formed by concatenating So with So phase reversed [So (-So)] have ACFs that when summed
have zero time sidelobes outside - To. Also, the resulting ACF amplitude is four times the ACF of
the sequence So. The procedure described above may be repeated so that the new pair of sequences
S2 = [SjSl] and S2 = [SI(-Sl)] are four times as long as So and hence have four times the energy.
The summed ACFs are then equal to eight times the ACF of So. The general term given by
Sivaswami [8] is Sm = [Sm-lam l] and Sm = [Sm.-(-Sm i)]. Any coded signal having desirable
properties, such as the chirp, Barker, shift register, and polyphase codes [1] may be used for So. As
an example let So = (1, 1, 1, -1); then

Sl (1, 1, 1, - 1, -1, -1, - 1, 1).

The ACF of So is

(-1, 0, 1, 4, 1, 0, -1),

the ACF of S, is

(-1, 0, 1, 4, -1, 0, 1, 8, 1, 0, -1, 4, 1, 0, -1),

and the ACF of S1 is

(1,0, -1, -4, -3,0, 3, 8, 3,0, -3, -4, -1,0, 1).

Summing the ACFs of S, and S, we have

(0, 0, 0, 0, -4, 0, 4, 16, 4, 0, -4, 0, 0, 0, 0),

which is equal to 4 times the ACF of So.

We generalize the concept of subcomplementary sequences by the following theorem.

Theorem 4: For any coded sequence So a subcomplementary set of sequences results from the
Kronecker product of So and a matrix consisting of a set of complementary sequences.

7
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Proof: See Appendix C.

The matrix in Theorem 4 is more general than the underlying matrix that is related to the recur-
sive relation given in Ref. 8, which consists of two rows of binary elements. The matrix in Theorem
4 can be any complementary matrix such as the Frank or P4 code matrices, and the shift register code
matrix previously discussed.

III. PERFECT PERIODIC AND ASSOCIATED APERIODIC CODES

The investigation of periodic codes is motivated by their relationship to complementary codes,
by their orthogonal properties, and by the fact that many good aperiodic codes are derived from
periodic codes having low sidelobe levels. This is exemplified by the constant amplitude periodic
Frank code [9], which has a constant sidelobe level of 0, referred to here as a perfect periodic code
(PPC). We show in this section that the Lewis-Kretschmer P4 code and the generalized Frank and P4
codes also have zero periodic sidelobes, and moreover the amplitude of the aperiodic P4 code ACF is
invariant with rotation. Doppler properties of a PPC are compared with the corresponding aperiodic
code. Also a new PPC is described that is formed from the product of two PPCs. Relationships are
derived between PPCs of length N2 and an N x N orthogonal code matrix.

Figure 2 shows a periodic waveform consisting of concatenated, constant amplitude, aperiodic
codes that are digitally coded. The complex values of ao, a,, , aN-1 make up the code word of
length N in a given pulse repetition interval (PRI). This code word is repeated in succeeding PRIs.

AMPLITUDE

PRI

Ii- *** .= _*--O ~ j 666

aO a1 a2 aN - 1 ao a1 a2 aN -1 ao a1 a2 aN -1 ao al a2

Fig. 2 - Digitally encoded periodic waveform

A PPC is defined to be a periodic code whose ACF has zero sidelobes and whose amplitude is
uniform (maximum power efficiency = 1), i.e., Ia II = Ia2 l = ... = IaN- I. An asymptoti-
cally PPC has the property that as N - oo the code's ACF has zero relative sidelobes and its power
efficiency is one.

Ill-A. Properties of Periodic Waveforms

We define a code word a such that a is a row vector of length N and

a = (a0, a,, a2, *-, aNA), (11)

8
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where an, n = 0, 1, 2, - -, N - 1 are the elements of the code word. A periodic code is one that
repeats the code word a indefinitely. Hence if ap, is the periodic code associated with a, then

apC = aoaoa , (12)

where the symbol o denotes concatenation.

On reception, a periodic code is match filtered with its periodic code word. The output of the
correlation process is also periodic with a period, N. Hence, the matched response repeats every N
unit time delays as does the sidelobe response.

We form an N x N circulant matrix A, based on each of the possible unit time delays of the
received code:

ao a1 a2 ... aN -I

aN-l ao al *-- aN-2

A = aN-2 aN-I ao ... aN-3 (13)

al a2 a3 ... ao

Note that the inner product between the 1st row and the m + Ith row, m = 0, 1, , N - 1 is
equal to the output of the correlation process at the mth unit time delay of any period. Also the inner
product of the mith row and the M2th row is equal to the inner product of the m3th and m4th row if
ml - M 2 = i 3 -m 4. In fact if we denote rm to be the inner product of the 1st and m + lth rows,
then

ro rl r2 ... rN-1

rl ro rl ... rN-2

r2 r1 ro ... rN-3

AAt = . . . . , (14)

* * *rNl rN 2 rN-3 ... r

where t denotes the matrix conjugate transpose. Here the diagonal elements are identical and equal to
the matched response, and the off-diagonal elements are associated with the N - 1 sidelobe
responses.

We constrain the code word a such that

lal 2 = N, (15)

where l * denotes the vector magnitude. We call a periodic code "perfect" if all the code elements
have equal magnitude and all of the sidelobe responses are zero. The first condition implies the code
is 100% power efficient or

lan 12 = 1, n = 0, 1, 2,*, N - 1. (16)

9



KRETSCHMER AND GERLACH

Zero sidelobe response implies that

AAt = NI, (17)

where I is the N x N identity matrix.

Equation (17) indicates that the A matrix consists of orthogonal rows, and for a circulant matrix
this implies that the columns are also orthogonal and hence the A matrix also consists of a set of com-
plementary sequences. Thus complementary sequences can be generated from the circulant matrix of
the Frank code and other codes that are discussed in a later section, and also from the Frank code
matrix previously described.

III-B. P4 Code

In Appendix D, it is shown that the Lewis-Kretschmer P4 code has a periodic ACF with 0
sidelobes.

1. Properties of P4 Aperiodic Code

We have shown that the P4 code, like the Frank code, is a PPC. The P4 polyphase code was
originally derived by sampling the phases of chirp signal and, like the chirp signal, it has good
Doppler properties and low sidelobes. Figure 3 shows a 100-element P4 code ACF for zero Doppler.
Figure 4 shows the ambiguity surface for the same code. The output of a receiver matched to a P4
code is represented by Fig. 4 for any given Doppler shifted return signal. Thus, the cut along the
zero Doppler axis corresponds to the ACF shown in Fig. 3. A Doppler shifted return signal causes a
mismatch thereby changing the filtered signal as shown by the ambiguity diagram. The time delay
axis is normalized to the uncompressed pulsewidth, and the sample numbers along the delay axis
correspond to range cells. The Doppler axis of the ambiguity function is given in terms of the pro-
duct of the Doppler frequency and the uncompressed pulse duration. A value of unity corresponds to
a 27r phase shift due to Doppler across the uncompressed pulse. The matched filter output for com-
plex discrete time samples taken once per code element may be stated mathematically as

N-kf 5: c*(i)c(i + k) ej(i-I+k)A 0 < k N - 1

e(k) = N+k (18)
, c(i)c*(i - k)ej(i-)A -(N - 1) c k < 0

where

ci is the ith code element,
k is the time delay index relative to match point, and
A = 2 wrfdr (Doppler phase shift in sampling internal T).

The ambiguity function is given by the squared amplitude of e(k). The ambiguity function of the P4
code is similar to that of the Frank code, which is shown in Refs. 1 and 7 to be derivable from the
sampled phases of a step-chirp waveform.

2. Invariance of Rotated P4

While any of the PPCs remain PPCs if the underlying aperiodic code is circularly rotated, it is
not true in general that aperiodic codes have ACF amplitudes that are invariant with circular rotation
of the code word. However, in Appendix E we prove that the P4 code has this invariance property.

10
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III-C. Doppler Properties of a Periodic Frank Code

Doppler properties of a periodic Frank code were investigated to determine the effect on the
zero sidelobe level achieved under zero Doppler conditions. This was done on a computer by consid-
ering two concatenated Frank codes as shown in Fig. 5 as the return signal having a specified
Doppler frequency fd. The radar receiver complex video signal was assumed to be matched over one
code length T to a zero-Doppler received Frank code, and the resultant computer plots were obtained
by performing the convolution indicated in Fig. 5. Hence, we can show on each plot the resultant
aperiodic and periodic sidelobes and peaks. In Fig. 6 the aperiodic sidelobes are shown to the right
and left of the peaks, and the periodic sidelobes are shown between the two peaks. It was found that
the peak sidelobe levels of the aperiodic and periodic ACFs are nearly the same for Doppler shifts of
0.375 and above.

FRANK FRANK

CODE CODE
| MATCHED

FILTER

I I I
0 T 2T t E 

Fig. 5 - Determination of aperiodic and periodic sidelobes of a 100-element Frank code

III-D. Relationship Between Orthogonal N x N Matrices and
Perfect Periodic Codes of Length N2

We address here the question of what the properties of an N x N matrix must be in order to be
able to concatenate the rows of this matrix to form a code of length N2, which when periodically
repeated is a perfect periodic code. The sufficient conditions for this to apply are stated in the fol-
lowing Theorem.

Theorem 5: Consider an N x N matrix E with elements on the unit circle. Let E have mutually
orthogonal rows. In addition, let all rotations of any two columns of E be mutually orthogonal.
Then a perfect periodic code results from concatenating the rows of E.

Proof: See Appendix F.

Note that any N x N matrix satisfying the conditions of Theorem 5 also has rows corresponding to a
set of complementary sequences.

III-E. New Periodic Codes

1. Generalized Frank and P4 codes

From the previous section we can generate new PPCs that we call generalized Frank codes by
postmultiplying the Frank code matrix by a diagonal matrix D consisting of the elements
(do, d1, d2 *-.., dN-l). This has the effect of multiplying each element in column 1 of Eq. (6) by
do, in column 2 by d 1, and so on. Since the Frank code matrix meets the conditions of Theorem 5,
and these conditions are not affected by the matrix D, we see that the resultant N x N matrix
corresponds to a PPC. Also, it has been found by computer simulation that a P4 code of length N2

can be written in terms of an N x N matrix satisfying Theorem 5 and we can then generate, in a
similar manner to that described above, a generalized P4 code that retains the properties of being a
PPC.

12
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KRETSCHMER AND GERLACH

2. Frank-Lewis-Kretschmer P4 Product Code

Another new PPC may be generated by forming the product, code element by code element, of
odd length Frank and P4 codes. This is proved in Appendix G.

3. Pennutation Codes

Appendix H shows that if a(n), n = 0, 1, 2, . . . N - 1 is a code having 0 or -1 periodic
sidelobes, then aMfl mod N. n = 0, 1, . . . N - 1, where M is an integer that is relatively prime to
N, also has the same periodic sidelobes.

Ex: Leta = ao a, a2 a3 a4

Code 1 = ao a2 a4 a, a3 M = 2

Code 2 = ao a3 a, a4 a2 , M = 3

Code 3 = ao a4 a3 a2 a, M = 4

Codes 1, 2 and 3 have the same -1 or 0 periodic sidelobes as a.

4. Reciprocal Codes

In a companion report written by the authors [10], a new class of codes is derived that is
referred to as reciprocal codes. They are based on the fact that any circulant matrix A as given by
Eq. (13) may be written in terms of its eigenvectors and eigenvalues as

A = B AB*, (19)

where B is a Butler matrix (discrete Fourier transform matrix) of eigenvectors of A and A is a diago-
nal matrix of eigenvalues of A. Thus all circulant matrices have the same eigenvectors and differ
only in their eigenvalues. Reference 10 shows that as a consequence of Eq. (19), a PPC word may
be multiplied by B to generate another PPC word that consists of the eigenvalues of the A matrix of
the original word.

IV. ASYMPTOTIC PERFECT PERIODIC CODES AND
THEIR APERIODIC PROPERTIES

An asymptotic perfect periodic code (APPC) is a periodic code that becomes perfect as the
number of code elements, N, in the periodic code word approaches infinity. For finite N either the
sidelobe level is nonzero and/or the power efficiency is less than 100% for these codes. However, as
N -,oo, either the sidelobe level is zero or approaches zero and/or the power efficiency is 100% or
approaches 100%.

Examples of codes that are APPCs are the shift register code, the primitive root code, the qua-
dratic residue code, and the index code. All of these codes, except the index code, are assumed to
have a subpulse amplitude of unity, and have a sidelobe level (voltage) equal to -1 for all time
delays. (Note that for an N-element code the peak or match point is assumed to be N). The index
code's first element is equal to zero, and the remaining unit amplitude elements are polyphase.

14
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Letting e equal the constant sidelobe level of a given APPC, we have by similar arguments to
Eqs. (11) through (16) that

AAt =

N e ... e

e N ...- ce

e e ... N

(20)

The APPCs described above must satisfy condition (20). In this section we describe these codes
and also show the associated aperiodic autocorrelation and ambiguity functions. Costas sequences are
also described because they are related to primitive root codes. We also show that the cross correla-
tion between different primitive root codes of the same length have sidelobes that are down by
approximately the time bandwidth product of the code, or equivalently, the pulse compression ratio,
which is determined by the number of code elements.

IV-A. Shift Register Codes

These codes, also known as pseudorandom shift register codes, when periodically repeated are
known to have a periodic ACF whose sidelobes are a constant equal to -1. These codes have been
studied extensively and are described in Refs. 9, 10, and 11.

IV-B. Primitive Root Code

The N code words of the primitive root code [121 are defined as

a,, = WNn+ ,, n = 0, 1, 2, *- - , N - 1

where N - 1 must be a prime number and a is a primitive root modulo N + 1 [12]. Example plots
of the aperiodic ACF of the primitive root code and its ambiguity function are given in Figs. 7 and 8,
respectively, for N = 100 and a = 2 (N + 1 = 101 is a prime number).

Go
Go)

w-
En0z
CD
0n
0-f
w~
Go1-

0 50 100 15c

S3MPLE NUMBER

200

Fig. 7 - ACF of primitive root code (p = 101, a = 2)
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8o c

Fig. 8 -Ambiguity function of the primitive root code (p = 101, (x = 2)

A different 101-element primitive root code (a = 3) is shown in Fig. 9, and the cross correla-

tion function (CCF) between the two primitive root codes is shown in Fig. 10. These results are typi-

cal for the cross correlations between two primitive root codes of the same length or number of ele-

ments; the sidelobes are down from the peak by approximately the pulse compression ratio.
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Fig. 9 - ACF of the primitive root code
(p = 101, a = 3)

100 150

SAMPLE NUMBER

Fig. 10 - CCF of primitive root codes (p 101,
(x = 2) and (p = 101, a = 3)

A related subject that has received recent attention in the literature is Costas arrays [13,14].
This consists of reordering the tones of a step-chirp waveform in order to eliminate the range-Doppler
coupling associated with the waveform, and also to prevent any large peaks in the sidelobe region of

the ambiguity function. The Costas array ordering of the tones assumes that no more than one tone

will simultaneously correlate with itself over all delays and Doppler frequencies in the pedestal region
of the ambiguity function.
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For a given number of tones N, the tones are ordered according to the sequence

a0 a1 * * * aN - mod (N + 1),

where a is the primitive root of N + 1.
array is shown in Figs. 11 and 12 for N

C

C 
Go C'>
L I

GL oLn r).
= I

CD

rLI
CZ,-I

An example of an ACF and ambiguity function for a Costas
= 10 and a = 7.

0 160 320 480 640

SAMPLE NUMBER
800

Fig. 11 - ACF of Costas sequence
(p = 11, a = 7)

Fig. 12 - Ambiguity function of Costas sequence
(p = 1 1, a = 7)

IV-C. Quadratic Residue Code

For this binary code, we introduce the Legendre symbol [12]: (qIp). This symbol is defined
for all q that are not divisible by p; it is equal to 1 if q is a quadratic residue of p and is equal to
-1 otherwise. Note that q is a quadratic residue of p if the congruence

z = q modp
has a solution.
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With these preliminaries the code is defined as

a,, =(n IN), n = 0, 1,---,N- 1

where N is prime number of the form 4m -1. Note that we define (0/N) = 1. For example for
N = 11, the code word a is given by

Plots of the aperiodic ACF and the ambiguity function are shown in Figs. 13 and 14 respectively.

00

LU

I

100 15
SAMPLE NUMBER

Fig. 13 - Aperiodic ACF of the quadratic
residual code, p = 103

Fig. 14 - Ambiguity function of the quadratic
residue code, p = 103
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IV-D. Index Codes

Let N be an odd prime and a be a primitive root of N, i.e., fja0a 1, * N-21 mod N maps
into 1, 2, * N - 11. If

ax -y mod N,

then x is defined as the index of y modulo N to the base a, or

x = indjy.

In fact for every y e{l, 2, **, N - I1) there is an associated index xef0, 1, * * ,N - 2}.

For example for N = 5, 2 is a primitive root and

20 _ 1, 21 e 2, 22 = 4, 2 =- 3 mod 5.

Hence

ind2 I = 0, ind 2 2 = 1, ind 2 3 = 3, ind 2 4 = 2.

With these mathematical preliminaries, the code is defined as (see Appendix I for derivation)

ind n
an = WN 21, n = O. 1, 2, **,N-1

where N is a prime number and

md 0

Plots of the aperiodic ACF of the index code and its ambiguity function are given in Figs. 15 and 16
for N = 101 andca = 3.

0

O-
UI0

50 100 150

SAMPLE NUMBER

Fig. 15 - ACF of index code (101, 3)
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-1f
Fig. 16 -Ambiguity function of the index code (101, 3)

V. SUMMARY

In this report, we have described new pulse compression waveform coding on individual and
multiple dissimilar pulses that result in low sidelobes after processing. Low sidelobes are important
in radar applications in order that small targets are not masked in the sidelobes of nearby strong tar-
gets. Also, orthogonal waveforms have been found that have cross correlations that sum to zero
everywhere. This has potential applications in resolving ambiguous range targets and in removing
ambiguous range clutter in medium- or high-PRF radars.

In particular, we have extended the theory of complementary sequences, and periodic waveforms
having ACFs, or compressed waveforms, with 0 or -1 sidelobe levels. Complementary sequences
may be regarded as the coding modulation that is applied to multiple radar waveforms. The comple-
mentary property signifies that the sum of the individually compressed pulses has 0 sidelobes.
Periodic coded waveforms having 0 or -1 sidelobe ACFs are of interest because the associated
periodic coded waveforms often have low sidelobes and, for the 0 sidelobe case, do not degrade signi-
ficantly in the presence of mismatches caused by Doppler-shifted return signals.

By extending the theory of complementary sequences and periodic waveforms having 0 or -1
sidelobes, new classes of waveforms have been found that have low sidelobes. Theorems have been
derived that extend the existing theory and that show new relationships between complementary
sequences and periodic waveforms having 0 sidelobes. Also, multiple orthogonal coded waveforms
have been found that have cross correlation functions that sum to zero.
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Appendix A

CROSS CORRELATION THEOREM

We define N code words with M elements each as

an = (all, a12, ,,,a M), n = 1, 2, , N. (Al)

We arrange these code words to be the rows of the following N x M matrix:

all a12 ... alM

a2 1 a2 2 ... a2M

A = . (A2)

aNt aN2 ... aNM

We show that

Cross Correlation Theorem: If the rows and columns of A are orthogonal and all columns except one
sum to zero, then the sum at all cross correlations between nonidentical code words is zero.

Proof. A correlation vector of length 2M - 1 between code words is defined as

Cmn = am *n, m,n = 1,2, ,N (A3)

where * denotes linear convolution and denotes the time-reversed complex conjugate of an. The
center element of cmn is called the match point. This point can be computed by taking the inner pro-
ducts between the rows of A. However, since the rows are orthogonal, the contributions from the
cross correlations (m * n) to the match point is zero. Hence

N 
Match Point ( Cmnl = 0. (A4)

mn=] 

If the columns are orthogonal, it is known that the codes are complementary or that

Sidelobes Cnn = 0, (A5)
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i.e., the sum of the autocorrelation vectors is zero everywhere except the match point. Thus

N N N 
Sidelobes | Cmn = Sidelobes : cmn + , c.n (A6)

| ,n=l mn=l n=l
I-m n m*n 

= Sidelobes 4 E am * An}
m,n=l

= Sidelobes f LnEan j * an 1

If the columns of A sum to zero everywhere except in one position (say the kth), then

N
F, a. = (°, °, 0, °k, 0, ,0) _6- b, (A7)

n=1

where Uk is the sum in the kth position. It is straightforward to show that

Sidelobes fb*bl = 0. (A8)

Combining Eqs. (A4) and (A8), the theorem follows.
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Appendix B

PROOF OF THEOREM 3

Theorem 3: Let the cross correlations between rows 1 and m of an (N X N) Frank code matrix be
represented by Clm (n). Then

N-I
, Cim(n) = 0, n = 0, -1, ±2,..., ±(N-1)

1=0

where m -- (1 + r) mod N and r = 1, 2, ... ,(N - 1).

Proof. The cross correlation function of the two complex sequences x (k) and y (k), each of length N,
is given by

N+n -1
Clm(n) = E x(k)y*(k - n),

k =O

N-n -I
Cim(n) = , x(k + n)y*(k),

k =O

for n< 0 ,

for n > 0.

Let x(k) and y(k), k = 0, 1, ... , N - 1, denote the Ith and mth rows of a Frank code matrix,
where

.2 kI

x(k)=e N
j2 km

y(k) = e N

The cross correlation function between rows I and m, Cim(n), where 1 = 0, 1, . , N - 1 and
m e (I + r)modN is given by

(B2)

j2w,- N+n-I
Clm (n) = e N S

k =O

j2 k( - m)
e2 N

j2,x IN-n-I j 2 rk(1 -m)
Cim, (n) = e N F, e N

k =0

I for n< 0 ,

for n > 0.

24
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For m - (1 + r) modN,

j2 n(l +r) N+n-1 -j2r kr
Cim (n) =e N E e N

k =0
j2Xni N -n-i -j 2s krj27r-!! N -j2=-

Cim(n)e= e N 

k =0

9 for n _ 0,

for n >0.

From Eq. (B4) it is elementary to show that

N-I
1= C0 (n) = 0, n = 0, A , -2, ., -(N - 1) Q E.D.
I =0

25
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Appendix C

PROOF OF THEOREM 4

Theorem 4: For any coded sequence So, a subcomplementary set of sequences results from the
Kronecker product of So and a matrix consisting of a set of complementary sequences.

Proof: Consider the Kronecker product of any coded sequence So and a complementary set of
sequences that comprise the matrix B given by

bl, b,2

b2 l b2 2

bMi bM2

''' bIN

b2N

All bMN

(Cl)

The Kronecker product of So and B results in the ith row being

(bj1S0 bi 2SO bi3SO biNSO). (C2)

Letting X(t) denote the autocorrelation function of the L-element code So, the ACF of the sequence
given by Eq. (C2), which we denote by Gi (t), is easily shown to be

Gi(t) = (biI b *) X (t) (C3)

+(bi I bl *N - I + bi2 bin X (t - L)

+ (bibi*,N -2 + bi2 bN - + bi3b1 )X (t - 2L)

+ (bijb+* + bi2b* ± biNb* )X [(t -(N - 1)L]

+ (bA*l bN) X [t - 2(N - 1)L].

From Eq. (C3) it is observed that the coefficients of the X( ) terms are exactly the same as the ACF
of the ith row of the complementary matrix B. Hence, it follows from the property of complemen-
tary sequences that

M
A Gi (t) = NM X [t - (N - 1)L].
i =i

(C4)
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Appendix D

DERIVATION OF THE P4/CHU CODE

In this appendix, we derive the Chu code [Dl] by using the concept of integer functions. Chu
stated this code without a derivation, then showed that it had periodic sidelobes equal to 0. The
Lewis-Kretschmer P4 code (8) and its permutation set (see HI E3) are the same as the Chu code
except for a linear phase shift that does not affect the magnitude of the periodic or aperiodic auto-
correlation function. Consider the N x N circulant matrix, A, associated with a periodic code. Let
the first-row elements have the following form:

an = W(n), n = O, 1, 2, , N - 1 (DI)

where f ( ) is some real function of the integer n and

.2w

WN = e N (D2)

Note that WNN = 1. We assume the following constraint equation (congruence) on f ( ):

f(n) =f(n +N)modN. (D3)

This congruence indicates the periodicity of f and implies that f (n) - f (n + N) is an integer that is
divisible by N.

The elements of the m th row of A can be written as

(Wk(N-m+1)' Wk(N-m+2)' ,,, KP(N-m)), (D4)

or using Eq. (D3) equivalently as

(Wk(- +) ' Wk(-m +2), wk(-m +N)). (135)

If am is a vector of length N equal to the mth row, then the condition that the code be perfect is

aia3 = 0, i * j, i, j = 1, 2, - -,N, (D6)

where t is the conjugate transpose operation. Note that Eq. (D6) is representative of (N - 1)N/2
equations. However, because of the rows are rotations of one another, only N - 1 equations are not
redundant. These distinct equations can be written as

ala, = 0, m * 1. (D7)
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From Eqs. (D5) and (D7), we can show that the N - 1 nonredundant equations are

N-I
N, Wk(n)-f(n-m) = 0; m = 1, 2, ,N - 1. (D8)

n =O

We know that if

f (n) -f (n - m) = Mnm + g(m), (D9)

where g (m) is some integer function of n, and M is an arbitrary integer relatively prime to N, then
Eq. (D8) is satisfied for all mi. We seek the functional form of f (n).

We let f (n) be a polynomial of order L:

L

f (n) = Scin 1, (D1O)
1=0

where the cl are to be determined. It is elementary to show that for f (n) having the form given by
Eq. (DlO) that in order to satisfy Eq. (D9),

cl = 0 for I 2 3. (DlI)

Hence f (n) is a polynomial whose form is given by

f (n) = c In + c2n2 . (D12)

(Note that we have dropped the c0 term since it is merely an arbitrary linear phase shift across all ele-
ments.) Now

f (n - m) = cI(n - m) + c2(n - m) 2

= -2c2nm + c1n + cn 2 - cm + cm 2 (D13)

Hence, if we subtract Eq. (D13) from Eq. (D12) and use the condition given by Eq. (D9), we find
that

C2 = -M, (D14)
2

g(m) = cm - c2m2

As a result,

f (n) = cmn + ±Mn2. (D15)
2
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The form of c 1 can be determined from constraint congruence (Eq. (D3)). After substituting the
functional form of f (-) as given by Eq. (D15) into Eq. (D3) and simplifying, we find that

IMN2 + cjN -0modN. (D17)
2

It is required that the expression on the left of this congruence be an integer and divisible by N. It is
easy to show that

* For N even, cl = I, arbitrary integer,

* For N odd, M even, c =1,

* For N odd, M odd, c= I + 2

Hence we can write

f(n) = -Mn2 + L1+ 1[MN mod 2]Jn. (D18)

If we drop the arbitrary linear phase shift across all elements, it can be shown that an equivalent form
is given by the expression

f (n) = -Mn(n + N mod 2). (D19)
2

The P4 code (8) and its permutation set is the same as this code, which we call a P4/Chu code,

except for a linear phase shift.

REFERENCE

DI. D.C. Chu, "Polyphase with Good Periodic Correlation Properties," IEEE Trans. Inf. Theory
18, 531-532 (1972).
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Appendix E

PROOF OF THE ROTATIONAL INVARIANCE OF
THE APERIODIC ACF OF THE P4/CHU CODE

The proof for the rotational invariance of the P4 code is shown here in terms of the more gen-
eral P4/Chu code described in Appendix D. The general form of the P4/Chu code as given by Eqs.
(D1) and (D19) is

(El)a = Wk$/ 2)Mn(n +N mod 2), n = 0, 1, ,N -I

where

.2w

e N

is an integer relatively prime to N, i.e., (M, N) = 1,

'O if N even,
I if N odd.

An arbitrary rotation of this code that forms a new code is given by

n =0, ,N-1
k = 0, 1, - , N - I

ank) = W$1/ 2)M(n +k)(n +k +N mod 2) (E2)

where k indexes the shifts in the rotation. We define a code word a(k) of length N as

a(k) = (agk), a kl, , ap1k).)

The aperiodic ACF sequence is defined as a vector r(k) of length 2N - 1:

r(k) = a(k) * a(k) = (r(k -1), r(k N_2), ... , rg), rfk), ... rZ') )

(3)

(E4)

where * denotes linear convolution and - denotes the time reversal complex conjugate of a. We can
show that

N-i-in
r(k) = a (k)ag(+ *, i =0, 1, 2,**,N 1

n =O

r(k) = (k)*r-m m,

(E5)

(E6)

We show that I rmk) 1 2 is independent of k or equivalently that the ACF of the P4/Chu code is
invariant with rotation.
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To this end, we substitute Eq. (E2) in Eq. (E5):

N-1-in
r,(k) = 1 W,1/ 2)M(n +k)(n +k +N mod 2) W -(1/2)M(n +k +m)(n +k +m +N mod 2) (E7)

n =0

Now

M(n + k)(n + k + N mod 2) - M(n + k + m)(n + k + m + N mod 2)

- -2Mkm -Mm2 - Mm -Mm(Nmod2)-2Mmn.

Thus

N-i-mn
rm k) = WN(I/2)M(2km+m 2+m+m(Nmod2)) - WV-Mmn, m = 0, 1, ,N - 1. (E8)

n =O

We see from Eq. (E8) that

N-I-m M
I m~) 2 I F, WpT M

mn ' 2 . (E9)

n =O

Hence the magnitude of the ACF is independent of k or invariant with rotations of the original code.
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Appendix F

PROOF OF THEOREM 5

Theorem 5: Consider an N x N matrix, E with elements on the unit circle. Let E have mutually
orthogonal rows. In addition, let all rotations of any two columns of E be mutually orthogonal.
Then a perfect periodic code results from concatenating the rows of E.

Proof. We define cnm to be a vector equal to the n th column of E where this column has been circu-
larly rotated m times. To be a perfect periodic code, we require that the (N2 x N2) circulant matrix
T, whose first row is formed by concatenating the rows of E, have mutually orthogonal rows. The
matrix T is given by

ell e12 '' eIN e2 l

eNN ell ... eI,N1- eiN

e 1 2 e 13 e2 1 e22

... eNI ...

... eN-IN ...

... eN2 ...

The inner product between rows i and j depends only on i - j. We denote the inner product
between row 1 and row m + 1 by rm and require that r. be equal to 0 for all m not equal to zero.

For m -0 mod N, because the rows are mutually orthogonal, rm = 0. For m * 0 mod N, it
is straightforward to show that

rl = (ClOXCNi) + (C20,CIO) + (C30 ,C20 ) + * - - + (CNOCN-.1O)

r2= (CIOCN-1,1) + (C20,CNI) + (C30,C]0 ) + * * * + (CNOCN-20o)

(F2)

rN2_1 = (ClOXC2N) + (C20 ,C3N) + (C30,C4N) + ' ' ' + (CNOC1,N-1),

where (, ) denotes the inner product of two vectors. For any inner product term (cn m2' Ckjk2) given

in Eq. (F2), n1I k,. Hence, if all rotations of any two columns of E are mutually orthogonal, it
follows by inspection of Eq. (F2) that rn = 0. Thus the theorem follows.
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Appendix G

PROOF THAT FRANK-P4 PRODUCT
CODE IS A PERFECT PERIODIC CODE

The Frank code of length N2 is defined

a (n) = N n = 0, 1, . , N2 - 1

WN = e-i(2 w/N)

and [ ] is the least integer function.

The P4 code of length N2 , where N is odd, is defined

b (n ) = 12)Mn (n + I) n = 0, 1, , * , N2 - 1

where M is relatively prime to N.

We form a new code called the Frank-P4 product code as follows:

c(n) = WkV212)Mn(m +1) . Wn[n/N] n = 0, 1, ** , N 2
- 1.

We can show that c(n) has zero sidelobes when implemented as a periodic code if M + 1 is also
relatively prime to N. To this end, by using Eq. (G4) it can be shown that the periodic ACF of c (n)
is given by

N2
1

r(k) = # Wkn+k)[(n+k)/N] W(112)M(n+k)(n+k+I) WNn[nl/k] W(' 2 )Mn(n+i)
n (k) = N2 N2

n =0
(G5)

We can show that Eq. (G5) reduces to

r(k) = W(k2 + k)M E WZn+k)[(n+k)IN] - n[n IN] WMnk
N2kn ==O N N

n =0

Let

n = niN + n2 ,

(G6)

(G7)

k = kjN + k2 , (G8)
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k = 1, 2, ---, N - 1.

k = 1, 2, -- - , N - 1.
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where n1, n2 , k,, k2 < N. We rewrite Eq. (G6) as

r(k) = W(k2 +k)M N-I N-I (nN+n 2+kN+k2)[(nN+n2+kN+k2)/N]N-(nN+n2)[(nN+n2 )/N] WMtnkN2) N( F , kN
n2=0 n,=0

Simplifying Eq. (G9) gives

(k) WM(k2+k) N-I N-i w(n 2+k2)(n+k)-n2nl wM~nk
n,=O n2=0

Simplifying further yields

(G9)

(GlO)

r(k) = WAM(k2+k)WJ4 k 2M N-I
n, =0

= WNM(k2 +k )
= N 2

= WVM(k2+k)
N A 2

vMkk2 N-I

n, =0

.MkIk2 N-I

n, =0

= WM(k2+k)Wkk2 N-I
n,=O

N 7n2k, +n,k 2 WMkn

n2=0

N Wn2k,+nk2 WM(kN+k 2)(nN+n2)

n, =0

N-I n2 k +nk 2 WM(k2n,+kn) WMk 2 nI
N N

n,=0

N-I (M+)n 2k w(M + I)nk 2 wMk 2 n2
n2 WN N N

n2=0

= WM(k2 +k) W'MkIk 2 N w(M+l)n2k, kWn2
n2=0

NI (M + I)k2 n,

, =o

Now for k2 * 0, and M + 1 relatively prime to N,

N-I (M+ I)k2n1 0E WN =0
n, =0

For k2 0, k, * 0,

r(k) = r(k, N) = WM(k2+k)WMkk2 N-1 (M+I)n2k1 _

r = N) N2 N = NWN 0.

Thus

r(k) = 0 for k =1,2, ,N 2 - 1.

Hence the Frank-P4 code is a perfect periodic code.
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Appendix H

PERMUTATION CODES

Consider a
0, 1, 2, , N -
n =0, 1, ,N

perfect periodic code (PPC) word a with code elements an n =

1. Let aN+n = an. Next, consider a periodic code a' with code elements a'n,
- 1, where

an'= aMn mod N

and M is relatively prime to N. We show that a' is also a PPC word. Define b. such that

N-1
bm = E aa'*n

n =O

Now, a' is a PPC word if bm = 0 for m = 1, 2, , N -1. We know that

a' =ak, a'+m = ak+1

where there is a unique k and I for each n and m, respectively. If m * 0, then I * 0. Hence a' is
perfect since

N-I
bm = E ana'*n +m

n =0

N-I
= F akaTl = 0.

k =O

(H4)
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Appendix I

INDEX CODES

Consider the following code with P elements:

i d (0) 1 ind,(1) 1 ind (2)W1k ~,Wk , Wk 1 ind (P-i)
W. I K

where

P is a prime integer,
a is a primitive root of P,
inda(*) is the integer index function to the base a,
k is a divisor of P - 1, I<k •P - 1,
I is integer not divisible by n,
Wk = e-j2 /k, and
W indx = 0 for x = 0.

We show that the periodic code given by Eq. (Il) has a constant sidelobe level - 1.

We can show that the m th row of the circulant matrix A can be written as

I ind (P + 1 -m)
Wk I

I ind,(P + 1-m + 1)
WK

. I @ l ind,(P+i-m+p-i)
(12)

Let b, be the inner product between the first row and the m + 1th row, then

b be - I indan -1 ind,(n -m
bm = Wk

n =0
m = 1,2, ,P - I

where we have used the fact that inde (P - m + n) = ind,(n - mi).

A theorem [Il] in number theory states that the expression given by Eq. (13) under the condi-
tions previously given for P, a, I and k is equal to - 1. Hence

bm = -1, m = 1, 2, , P - 1 (14)

and the periodic code given by Eq. (I1) has a constant sidelobe level equal to - 1.

REFERENCE

II. I.M. Vinogradov, Elements of Number Theory (Dover Publications, 1954).

36

(I1)

(13)


